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Preface

This book contains the material that was essentially covered in a course
“de troisitme cycle”' taught during the second semester of the 1996-1997
academic year at the University d’Orléans. The goal of this course was to
give an exposition of an example of the use of logarithmic Sobolev inequal-
ities coming primarily from two papers by B. Zegarlinski [Zeg90, Zeg96].
The example is concerned with real spin models with weak interactions on
a lattice where one can apply a classic method due to Dobrushin; see no-
tably [Dob70]. For these models, we give a proof of the uniqueness of the
Gibbs measure by showing the exponential stabilization of the stochastic
evolution of an infinite dimensional diffusion process which generalizes the
case of the Glauber dynamics for the Ising model. Although these models
are technically more complicated than the Ising model, one still uses famil-
iar techniques, e.g., using Ito’s stochastic integral calculus to construct and
study diffusion processes, as well as utilizing the well-known properties of
self-adjoint differential operators on R™ and Sobolev and Poincaré inequali-
ties in their original setting. These models also utilize in a natural way some
elegant results on logarithmic Sobolev inequalities such as the Bakry-Emery
and Herbst inequalities. Interestingly, these models are simplifications of the
Nelson models of Euclidean fields where Gross first introduced logarithmic
Sobolev inequalities.?

In this book we introduce in a self-contained manner the basic notions of
self-adjoint operators, diffusion processes, and Gibbs measures. The chap-
ter on logarithmic Sobolev inequalities is enriched by adding applications to
Markov chains so as not to remain in too special a setting. The reader will
find indications of some recent applications of logarithmic Sobolev inequal-
ities to statistical mechanics at the end of Chapter 5.

I would like to thank my colleagues S. Roelly and P. Maheux for very
useful discussions as well as the students of the DEA d’Orléans, in particular,
G. Salin.

Note added to the original Preface. The translation presented here
differs from the French original by a small number of corrections. Since the
original course was given, logarithmic Sobolev inequalities have been the
subject of many articles. We recommend that interested readers cousult

!Translator’s note: “Un cours de troisitme cycle” is equivalent to an advanced grad-
uate course in an American university.
2Translator’s note: These are now also called Gross inequalities.
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[Cor02, ORO7], and their bibliographies if they are interested in further
study of the subjects treated here.



CHAPTER 1
Self-Adjoint Operators

We denote by H, (-,-) a separable complex Hilbert space,’ by D a dense
linear subspace of H, and by A an operator from D to H. The space D is
called the domain of the operator A and is denoted D(A). Unlike bounded
operators,? in particular, operators on any finite dimensional Hilbert space,
simple consideration of the symmetry of operators does not lead to a theorem
of spectral decomposition. We will introduce directly the notion of self-
adjointness by utilizing spectral conditions based on an exposé of P. Cartier
at P’Ecole Polytechnique.

1.1. Symmetric operators

Definition 1.1.1. We say that the complex number ) is in the resolvent
set p(A) of A if (\Id— A) is injective, its image (AId— A)D is dense in H, and
if the inverse operator (A Id — A)~! is a bounded operator from (AId — A)D
to H. This operator is then uniquely extended to a bounded operator R)
on H called the resolvent operator.

We often abbreviate A — A\Id by A — A.

Proposition 1.1.2 (Resolvent Equation). . For all A\, 1 € p(A) we
have:
Ry — R, = (A= p)R,R,.

Note that the Resolvent Equation implies that {R)} is a commutative
family of operators.

Definition 1.1.3. We say that A is closed if D is complete for the norm

lla = (Il + l4wl?) .
Consider the graph of A:
Ga={(v,AY) € H xH : y € D}.
It is obvious that the projection of the graph of A, with the usual product
norm H x H, onto D, with the norm |-|4, is an isometry. Thus it is clear

that A is closed if its graph G4 is closed in H x H. For a closed operator A
one can express the resolvent set p(A) in a simpler way.

IThe scalar product is left linear and right anti-linear.
2Recall that an operator B is bounded if there exists a constant M such that ||B|| <
M||z|| for all z in D.
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Proposition 1.1.4. Let A be a closed operator. In order for A to be in
p(A), it is necessary and sufficient that one of the two following conditions
hold:

(1) The mapping (A — A) is a bijection of D onto H.
(2) There exists a bounded operator Ry of H such that:

Ryo(A—A)=Idp
(1.1.1) {(,\ —A)oRy =1dy.

PROOF. (1) In order to show the necessity of the condition, we need
to show that if A € p(A) then Image(A — A) = H. Since this image is
dense, there exists for any x € H a sequence y, of elements in D such that
z = lim(Ayn — Ayn). By applying the bounded operator R), we can conclude
that y, = Ra(\ — A)yn converges. Since both y, and Ay, converge, and
G4 is closed, the limit y of y, is in D and lim(Ay,) = Ay from which we
conclude that A\y — Ay = z. Since z is arbitrary, we see that (A— A)D = H.

Now suppose A — A is a bijection. It is a continuous mapping from the
Hilbert space (D, ||-]|4) to the Hilbert space H. By Banach's open mapping
theorem, the inverse mapping is continuous and obviously remains continu-
ous if we equip D with the weaker norm ||-|| 5.

(2) We see these conditions are equivalent to the initial definition if we
take into account the fact that A — A is surjective if its image is dense. O

Self-adjoint operators are a special class of symmetric operators where
by a symmetric operator A with a dense domain D in H we mean a linear
operator A : D — H that satisfies:

Vo, €D (A(p, d’) = (‘P» Aw)
They are often defined on natural domains that are too small for the operator
A to be closed. A basic example is the Laplacian A defined, say, on D =
C(R™), the space of infinitely differentiable functions on R™ with compact

support. However these operators are easily seen to be closeable in the
following sense:

Proposition 1.1.5. The closure of the graph of the symmetric operator
A with domain D as a subset of H x H is the graph of an operator A defined
on a domain D' D D. Moreover the resolvent sets and the resolvent operators
are the same for both operators. ( A is called the closure of A.)

PROOF. We first show that G4 is a graph of a function from H to H.
We need to show that if (¢,%) € G4 and (p,%') € Ga then 1 = 9. There
exists a sequence (yn, App) that converges to (¢, ¢) and similarly a sequence
(¢, AgL) that converges to (¢,4'). Let w be an arbitrary element of D.
Since

(w,9) = lim (w, Ap,) = lim (Aw, pn) = (Aw, ¢),
and similarly since (w,v’) = (Aw,y) for all w in the dense space D, one
necessarily has ¢ = ¢/.
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It is immediate by passing to the limit that the operator associated to
the graph G4 remains symmetric and that it is closed. We establish that
p(A) C p(A) as follows: for A € p(A) the only thing that needs to be justified
is that A\ — 4 is injective. In fact, if ¢ € ker()\ — A), there exists a sequence
n that converges to ¢ and such that ¥, = App, — Ap, converges to 0, from
which we have: ¢ = limy, = lim Ry¥,, = 0.

We now consider the inclusion in the other direction. By construction,
D is dense in D’ for the norm ||-|| and A is continuous with respect to this

norm. Using this, the property (A — A)D = H follows from the fact that

(A\—A)D’ = H. The other properties characterizing p(A) follow immedi-
ately from the fact that it is contained in p(A). O

The following lemma allows us to study a priori the resolvent set and
the spectrum o(A) := C\p(A) of a symmetric operator A.

Lemma 1.1.6. Let A be a closed operator and let |-| be the uniform
norm on bounded operators on H.
(1) If X € p(A), then the open disk D(),||Ry||™!) in C is contained in
p(A). In particular p(A) is open.
(2) If A is symmetric and X € p(A), then the disk D(\, (X)) is con-
tained in p(A).

o0
PROOF. (1) If |p— | < ||Ra|| ™}, the series S = Y (A — )™ R} converges

=0
in the uniform norm on the algebra of bounded gperators and R)S is a
bounded operator R, that satisfies the equations (1.1).
(2) If & and B are two real numbers, we have:

(1.1.2) a+iB € p(A) and B#0= |Ry|| <8~
This follows from the coercivity inequality
(1.1.3) (A - o —iB)zl|® > B2|lz|?,

which in turn follows from the calculation, for z € D,
(A - & - iB)z||* = (A — a)z, (A — @)z) + (Bz, Bz)
+ i(Bz, (A — a)z) — i((A — a)z, Bz)
= (A = a)z||* + Bl
O

Let C* := {A € C : £3()\) > 0}. Then we have the following proposi-
tion, the proof of which is left as an exercise for the reader.

Proposition 1.1.7. There are only four mutually ezclusive possibilities
for the spectrum of a symmetric operator A: o(A) is equal to C*, C~, C,
or it is included in R.
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Definition 1.1.8. We say an operator (A, D) is essentially self-adjoint
if it is symmetric and if o(A) C R; if, in addition, it is closed we say it is
self-adjoint. If A is self-adjoint, a core for A is any dense domain contained
in the domain of A on which the restriction of A is essentially self-adjoint.

Proposition 1.1.9. Let A be a symmetric (resp. symmetric and closed)
operator on D. Then (1) below is a sufficient condition that A be essentially
self-adjoint (resp. self-adjoint) and (2) and (8) are necessary and sufficient
conditions that it be essentially self-adjoint (resp. self-adjoint).

(1) There exists a real number X\ in p(A).
(2) xi are in p(A).
(83) The images (i — A)D and (i + A)D are dense.

PROOF. The first two conditions allow us to eliminate the first three
possibilities in Proposition 1.1.7. Finally, condition (3) is equivalent to (2).
Indeed, the conditions of injectivity and of the continuity of the inverse,
which are part of the definition of R; (or R—;), are always satisfied in the
symmetric case by applying the inequality (1.1.3). ]

Ezxercise 1.1.10. Verify that for A symmetric and A real the necessary
condition of injectivity for A € p(A) is a consequence of the density condition.

Ezercise 1.1.11. Let (W,F,u) be a measure space and let x be a
real-valued measurable function on W.

Show that the possibly unbounded operator M, on H = L?(y) defined
onD:={pe€ H: px} € Hby M,(p) :== xg is self-adjoint and that the
resolvent operator Ry, when it exists, is multiplication by (A — x)~*.

Deduce from this that the spectrum of M, is “the essential image” of x,
i.e., the support of the measure x(u). By the support of a measure v on R,
we mean the closed complement of the union of all open sets of v-measure
zero.

Ezxercise 1.1.12. Let A and B be two self-adjoint operators such that
A extends B, that is to say, D4 D D and B is the restriction of A to Dg.
Show that A = B.

Ezercise 1.1.13. Consider H = L%([0,1]) and let

Do :={f € C'([0,1)) : f(0) = f(1) =0}

For f € Dy, we set Af =if’.

Verify that the operator A is symmetric on Dy. Verify that (i—A)Dy L u,
where u(z) = e™*, and deduce from this that (A4, Dy) is not essentially self-
adjoint. Show that any distribution u that is the solution of the equation
u' = ku is equal to the function ce**.

Let a be a fixed complex number of modulus 1. Let B be the operator
defined by the same formula as A but on the domain: D = {f € C!([0,1]) :
f(Q1) = af(0)}. Show that B is essentially self-adjoint.
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A particularly useful application of Proposition 1.1.9 is to symmetric
operators that are bounded below. We say a symmetric operator A is positive
when:

Vz € D(A) (Az,z) 20,

and we say that A is bounded below if there exists a constant m such that
A — mld is positive. In this case we also say that A is bounded below by
m,ie.,

Im Vz (Az,z) > m|z|>.

Proposition 1.1.14. Let A be a symmetric operator that is bounded
below by m and A < m. Then in order for A € p(A), it is necessary and
sufficient that (A— A)D is dense. Thus if (A— A)D is dense, A is essentially
self-adjoint on D.

PROOF. Since (x,(A — A)z) > (m — )\)||z||?, we see right away that the
condition of injectivity and the condition of continuity of R) are satisfied.
Thus by the definition of p(A), A € p(A) if and only if (A — A)D is dense.
By Proposition 1.1.9(1), A € p(A) implies A is essentially self-adjoint. O

Proposition 1.1.15. As an operator on the domain D = C°(R™) in
the Hilbert space L?(R™), the operator A is essentially self-adjoint.

PROOF. It obviously is sufficient to show that —A is essentially self-
adjoint on this domain. We first see that —A is symmetric and positive
from Green'’s formula:

(—Ap, ) = /R VoV dz.

To show that it is essentially self-adjoint it is sufficient by Proposition 1.1.14
to show that (Id—A)D is dense. Indeed if this were not the case, there
would exist a function f # 0 in L2 such that (f,o — Agp) = 0, for all ¢ € D.
Utilizing the Fourier transform on L2(R™), which is an isometry, we would
have (f(p). (p? + 1)@(p)) = 0. This in turn would imply that f = 0 since
the subspace of functions

T ={(p*+1)3(p) : ¢ € D}

is dense in L?(R"). This contradicts the assumption that f # 0.

Here we recall a proof that T is dense. Consider a function ¥» € S where
S is the Schwartz space of rapidly decreasing functions on R. One can find
a sequence of functions ¢, of C2°, such that for each order a the derivative
©2 tends to ¥ in L2. For example, pn(z) = ¢(z/n)y(z) where ¢ € C° is
equal to 1 in a neighborhood of 0. Thus —Awn +¢n converges to —Ay+1 in
L2. Since the Fourier transform is an isometry on L2, we see that (p? + 1)y
is in the closure of T. But any function in S can be written in the preceding
form. Hence T contains S = L2. ]



